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In this paper we present the results from numerical calculations, based upon the
Navier–Stokes equations at relatively high Reynolds number, of the formation of
a vortex ring when fluid is ejected from a circular tube. Our results are com-
pared with the experiments of Didden (1979), and the inviscid flow calculations of
Nitsche & Krasny (1994). Reasonable agreement is achieved except for the rate of
shedding of circulation during the initial stages of ring formation. The theoretically
predicted rate of shedding is substantially higher than that predicted by Didden. By
contrast the inviscid theory predicts an anomalously high rate of initial shedding. We
offer explanations for both of these apparent discrepancies.

1. Introduction
Vortex dynamics is a central theme of fluid dynamics, and a measure of the

present interest in it is provided by Saffman’s recent monograph (1992). The vortex
sheet is a basic model for a free shear layer, and the formation of vortices by
rolling up of vortex sheets, which separate at the edge of a body, is a commonly
occurring phenomenon in many flow configurations. Such flows in two dimensions,
including the initial stages of vortex formation following an impulsive start about
a sharp edge, have been extensively studied, see Saffman (1992). Vortex rings have,
perhaps, received less attention, although a considerable literature is devoted to them.
We are concerned in this paper with the formation, and propagation, of vortex
rings when fluid is ejected from a circular nozzle. Our viscous calculations, based
upon the Navier–Stokes equations at high Reynolds number, are a complement
to the experiments of Didden (1979), and the inviscid model of those experiments
by Nitsche & Krasny (1994). Our main aims in the paper are threefold: first to
make a comparison with the most detailed experiment of Didden, second to explore
the effects of Reynolds number, and finally to offer an explanation for perceived
anomalies between theories and between theory and experiment.

In his experiments Didden (1979) created vortex rings by ejecting fluid from a
circular nozzle by means of a piston that accelerates from rest to a uniform speed.
The vortex sheet that separates at the nozzle edge rolls up to form a vortex ring. This
ring propagates axially from the nozzle with its self-induced velocity. The circulation
associated with it increases, until the piston motion ceases. By means of laser-Doppler
velocimetry Didden has measured the flow properties in the orifice plane, from which
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he has calculated, in particular, the shedding rate of circulation from the orifice
lip. In addition he has measured overall flow properties such as ring diameter and
speed. Nitsche & Krasny (1994) have constructed an inviscid model of this high-
Reynolds-number flow based upon Krasny’s vortex-blob method. See, for example,
Krasny (1986). The satisfaction of a Kutta condition at the orifice lip determines the
shedding rate of circulation . Overall flow properties are fairly well reproduced by the
model. These include vortex ring diameter, ring propagation speed and, except in the
initial stages of ring formation, circulation shedding rate. Our calculations are based
upon the Navier–Stokes equations which we have solved using a finite-difference
method, described briefly in §2 below. The calculations are carried out in a finite
circular cylindrical container using a non-uniform mesh that allows us to concentrate
grid points in the neighbourhood of the orifice lip at which the vortex ring first forms.
The piston motion of Didden’s experiment is simulated in the nozzle from which the
fluid is driven. Our results are presented, and discussed, in §§6, 7 and 8. We can
report fairly good overall agreement with Didden’s experiments, certainly in respect
of ring diameter, propagation speed and, again away from the initial formation phase,
circulation shedding rates. Our results provide an indication of the effects of Reynolds
number. For example the ring penetration distance during the inflow period increases
with Reynolds number, as does the ring diameter. The maximum rate of circulation
shedding during ring formation also increases with Reynolds number. The method
of Nitsche & Krasny (1994) relies upon a regularizing, or smoothing, parameter δ.
In the limit δ → 0 this will yield a true inviscid, that is infinite-Reynolds-number,
solution. The results from their paper that we quote herein are for δ = 0.1. As an
inviscid solution their results are consistent with the Reynolds number variations we
have described.

The only serious disagreement between, and within, the theoretical and the exper-
imental results lies in the circulation shedding rate during the initial stages of ring
formation. Although, as we have indicated, the inviscid results are consistent with
our Reynolds number trends, the initial shedding rate of circulation predicted by
the inviscid model is anomalously high. It is clear from Nitsche & Krasny’s paper
that this quantity is initially extremely sensitive to variations in δ. For example the
maximum shedding rate drops by 30% as δ changes from 0.2 to 0.1. It would,
therefore, appear that in this initial period, of about 0.1 s, the parameter δ is not
sufficiently small, and that decreasing it further would yield results that are entirely
consistent with our Navier–Stokes calculations. When compared with the experiment
of Didden, our Navier–Stokes calculation predicts a circulation shedding rate that is
unacceptably high during the piston acceleration phase. However a careful analysis
of Didden’s results reveals an inconsistency between them that is sufficient to explain
the disagreement. We conclude, given the above, that theory at infinite and finite
Reynolds numbers, and experiment, are in harmony, and that our calculations at
finite Reynolds number not only bridge earlier theoretical and experimental results,
but also help to provide an understanding of these interesting and complex flows.

2. Governing equations
2.1. Equations

The governing equations are the Navier–Stokes equations for an incompressible fluid.
From these we have Helmholtz’s equation for the vorticity ω′ as

∂ω′

∂t′
− ∇× (v′ × ω′) = −ν∇× ω′, (2.1)
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together with

∇ · v′ = 0, (2.2)

where ν is the kinematic viscosity, v′ is the velocity, t′ is time and

ω′ = ∇× v′. (2.3)

In the cylindrical geometry that we work it is convenient to use cylindrical coordinates
(r′, θ′, z′) with corresponding velocity components (u′, v′, w′). In the above equations
we make variables dimensionless using a, the radius of the cylinder into which the
vortex rings emerge, as a length, U0 a velocity, and a/U0 a time, where the typical
velocity U0 is defined below. From the assumptions that the flow is axisymmetric,
with no swirl, we have the dimensionless velocity and vorticity given by v = (u, 0, w),
ω = (0, ζ, 0), where ζ = ∂u/∂z − ∂w/∂r. Our computational approach is based upon
the stream function–vorticity formulation. We satisfy (2.2) by introducing the stream
function ψ such that

u =
1

r

∂ψ

∂z
, w = −1

r

∂ψ

∂r
. (2.4)

Rather than the component of vorticity ζ we choose to work with γ = −rζ =
r(∂w/∂r − ∂u/∂z). The equations satisfied by γ and ψ are then determined from the
θ-components of (2.1) and (2.3) as

∂γ

∂t
+ u

∂γ

∂r
+ w

∂γ

∂z
− 2uγ

r
=

1

Ra

(
∂2γ

∂r2
− 1

r

∂γ

∂r
+
∂2γ

∂z2

)
, (2.5)

and

∂2ψ

∂r2
− 1

r

∂ψ

∂r
+
∂2ψ

∂z2
= −γ, (2.6)

where Ra = U0a/ν is the Reynolds number that characterizes the flow. We distinguish
between this Reynolds number and Rd, the Reynolds number in the experiments of
Didden (1979), in §4 below.

2.2. Computational geometry and boundary conditions

The computational domain is shown in figure 1. The axis of symmetry lies along
r = 0, and the nozzle at whose lip the vortex ring forms is defined by r = rni,
0 6 z 6 zn. The outer surface of the nozzle has r = rno. Along z = 0, 0 6 r 6 rni we
impose an inflow condition, and at z = zo, 0 6 r 6 1 we introduce a suitable outflow
condition. The remaining boundaries are impermeable no-slip boundaries.

The boundary conditions to be satisfied at each of these boundaries of the compu-
tational domain are as follows. On the axis of symmetry we have

ψ = u = γ = 0. (2.7)

On the impermeable no-slip boundaries we have, for the surfaces r = constant,

ψ = c1(t), w = 0, γ = r
∂w

∂r
, (2.8)

and for the surfaces z = constant

ψ = c1(t), u = 0, γ = −r ∂u
∂r
, (2.9)

where c1 is defined from the inflow conditions. At the inflow boundary we impose a
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Figure 1. Definition sketch. The inset shows the orifice lip shape.

normal velocity w0(r, t) = λf(r)g(t). The function g(t) represents the motion of the
piston which may be accurately determined from the piston trajectory presented by
Didden (1979) from the experiment on which we focus our attention. The function
f(r) is not so determined, and we subsequently make further assumptions about this
quantity. We then have

ψ = −
∫ r

0

sw0(s, t) ds, w = w0(r, t), γ = r

(
∂w0

∂r
− ∂u

∂z

)
, 0 6 r 6 rni, z = 0,

(2.10)

and c1(t) = −
∫ rni

0
sw0(s, t) ds. Finally at the outflow boundary z = z0 we assume

conditions are independent of z which will be appropriate if z0 is sufficiently large.
This is implemented by setting

∂γ

∂z
=
∂ψ

∂z
= 0, 0 6 r 6 1, z = z0 − δz. (2.11)

3. Numerical procedures
The numerical approach is based upon the stream function–vorticity formulation,

as represented by equations (2.5) and (2.6). A non-uniform mesh in the (r, z)-plane is
used on which all space derivatives are represented by second-order-accurate finite-
difference formulae. The time derivative in (2.5) is discretized in the manner of
Crank–Nicolson. The representation of the boundary conditions for ψ in finite-
difference form is straightforward, as are the conditions on u and w. The conditions
on γ in (2.8) and (2.9) at a solid boundary are more complex. It is common practice
to follow the method of Woods (1954), using an expansion about the boundary; and
this we have done to realize conditions for γ that are second-order accurate. All of
the discretized equations and boundary conditions are solved simultaneously at each
step, with a Picard-type iteration used to handle the nonlinearity which is implicit in
the equations. The equations were solved by the matrix solver BICGSTAB(L) that
has been developed by Sleijpen & Fokkema (1993), with a pre-conditioning matrix
based on incomplete LU-decomposition as described by van der Ploeg (1992).
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The parameters that control the flow under discussion are the Reynolds number
Ra (or Rd), and the geometrical parameters. We have used three values of Rd, namely
Rd = 1150, 2300, 4600. In all the calculations we have set zb = 0.5, zn = 0.8, zo = 1.75,
rni = 0.2, rno = 0.204. On the scale of Didden’s experiments these correspond to
z′b = 6.25 cm, z′n = 10.0 cm, z′o = 21.875 cm, r′ni = 2.5 cm, r′no = 2.55 cm with
a = 12.5 cm. Although z′n − z′b is apparently smaller than in the experiments this
is unimportant. For the nozzle itself (rni − rno)/rni = 0.02, exactly as in nozzle 2 of
Didden’s experiments. We have shaped the nozzle lip itself, as in figure 1, since in
practice there will not be an exact right-angled corner.

As we have already remarked, a non-uniform computational mesh is used. This
has 159 mesh points in the r-direction, with 295 in the z-direction. In the range
0.1 6 r 6 0.4, 0.2 6 z 6 1.1, δr, δz do not exceed O(10−2), whilst in the immediate
neighbourhood of the lip they are O(10−4). In the outer part of the domain they
increase to O(10−1). Each simulation was started with a time step δt = 10−5. After a
few steps this was increased to 5 × 10−5 and thereafter increased periodically up to
δt = 8× 10−4 at t = 0.4.

We note at this point that we have tested our solution method, in the absence
of a nozzle, in a variety of ways. Thus, we have reproduced exact solutions of
the Navier–Stokes equations, we have showns that isolated rings at high Reynolds
number propagate according to the asymptotic formula of Saffman (1970), and we
have confirmed the solutions of Weidman & Riley (1993) for vortex-ring interactions.

4. The experiment
To complete the formulation of our problem there remains the specification of

w0(r, t) = λf(r)g(t) in (2.10). In the experiments we wish to simulate, Didden (1979)
created vortex rings at the lip of the nozzle by driving a piston along it. The piston
displacement was accurately measured, and taking the time variation of our input
flow at z = 0 from the piston trajectory presented by Didden we have (see also
Nitsche & Krasny 1994)

g(t) =


0, t 6 0, t > t2,

1−
(
t1 − t
t1

)2.8

, 0 < t 6 t1,

1, t1 < t < t2,

(4.1)

where t1 = U0t
′
1/a, t2 = U0t

′
2/a, with t′1 = 0.3 s, t′2 = 1.6 s in the experiments. Whilst

the time variation (4.1) is determined from experiment the form of the radial variation
is less obvious. We have taken

f(r) =


1, r 6 rni − δ,

1−
(
r − rni + δ

δ

)1.5

, rni − δ < r 6 rni,
(4.2)

where δ = 0.1rni(2300/Rd)
1/2 is chosen as a representation of the boundary-layer

thickness in the nozzle at z = 0, and λ is a parameter that enables us to maintain the
same volume inflow rate as in the experiments. In fact the choice for f(r) in (4.2) is
not crucial, and not least since fluid particles from z = 0 will not reach the lip of the
nozzle at time t′2 in the comparison with the experiment that we make.

We note that Didden bases his Reynolds number upon the nozzle diameter d, so
that Rd = U0d/ν and the relationship between Ra and Rd is Ra = Rd/2rni which cor-
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responds, of course, to the relationship between the two length scales a = d/2rni. The
characteristic velocity U0 is taken as the terminal uniform piston speed. The results
that Didden presents are for values U0 = 4.6 cm s−1, U0 = 6.9 cm s−1. With a nozzle
diameter of 5.0 cm, and water as a working fluid with ν = 0.01 cm2 s−1, this corre-
sponds to Reynolds numbers Rd = 2300, 3450 respectively. The experimental results
concentrate almost entirely upon the lower of these Reynolds numbers, in particular
the piston trajectory is only given in that case, and it is with these that our com-
parisons with experiment are made. The effects of varying the Reynolds number are
explored by considering the cases Rd = 1150, 4600, with g(t), f(r) still as in (4.1), (4.2).

5. Vortex-ring creation: general considerations
Our aim in this investigation is to study the formation, and subsequent behaviour,

of a single vortex ring as fluid is forced from a circular orifice, and wherever
possible to compare with the experimental results of Didden (1979). In making a
comparison with experiment we concentrate upon velocity profiles in the exit plane,
the shedding rate of circulation and the trajectory of the vortex rings. Variations with
Reynolds number Rd, over a limited range, enable us to place the inviscid results of
Nitsche & Krasny (1994), using the vortex blob method, in context.

In our calculations the vortex rings propagate into a circular cylindrical container.
By contrast, in the experiments the vortex rings were projected into a tank of square
cross-section whose side was almost double the size of our cylinder, and about eight
times longer. However the experience of Riley (1993) suggests that the boundaries,
radial or axial, will only influence the vortex-ring dynamics when the ring is within a
dimensionless distance 0.2 of them. The radial boundary is of particular significance
in this respect. A consideration of the image system in r = 1 shows that it may be
expected to reduce the propagation speed of the vortex rings. In earlier calculations
with a uniform mesh, Heeg (1993) made comparisons with rn = 0.2 and rn = 0.4 at
Reynolds numbers Rd = 1150, 2300. The axial propagation speeds were unchanged,
although the ring radii were slightly reduced. With a uniform mesh satisfactory results
could not be obtained at higher values of Rd. With the non-uniform grid used in
the present calculations the higher resolution that is necessary in the neighbourhood
of the nozzle lip, from which the vortex rings are shed, may be achieved. Grid-size
checks confirm the accuracy of the results we present up to Rd = 4600. Although the
results obtained by Heeg (1993) did not allow for a finite nozzle thickness, his results
are little different from those presented here.

6. Velocity profiles
In figures 2 and 3 we present axial and radial velocity profiles, for the case

Rd = 2300, in the nozzle exit plane z = zn for r 6 rni and r > rno. In these figures we
show not only our calculated results but also the experimental results that we have
transcribed directly from Didden (1979). Note that we have converted the results of
the numerical simulation to dimensional form for comparison with experiment.

The overall features of the experiment are well represented. Within the nozzle, r <
rni, the initial phase of developement close to the lip shows an acceleration of the fluid
in the boundary layer at the nozzle boundary. This is consistent with an initial poten-
tial flow around the lip. As the vortex ring forms this effect dies away, and we have an
essentially uniform flow developing at the exit surrounded by a boundary layer on the



Formation of an axisymmetric vortex ring 205

6

4

2

0 0.5 1.0 1.5 2.0 2.5

(a)

1.6 s

0.6 s

0.2 s
w

′ (
cm

 s
–1

)

4

2

0

2.6 2.8 3.0 3.2 3.4

r′ (cm)

w
′ (

cm
 s

–1
)

–2

–4

1.6 s

0.6 s

0.2 s

r′ (cm)

(b)

Figure 2. Axial velocity profiles in the nozzle exit plane for Rd = 2300, calculated results with grid

points shown ( q q q q ); experiment ( ). (a) r < rni, (b) r > rno.
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wall. For r > rno the axial velocity profiles show features consistent with a neighbour-
ing vortex. Thus, close to the nozzle surface the axial flow is positive, but at a larger
radial distance negative. And as the vortex ring propagates away from the nozzle the
point of zero axial velocity on z = zn also moves radially outwards, with the level of the
induced axial velocity diminishing. The radial component of velocity in the exit plane
is shown in figure 3 for all r. For r < rni there is flow radially outwards as one may
expect. But for r < rno there is flow radially inwards close to the nozzle which is consis-
tent with the presence of the shed vortex ring in z > zn. At t′ = 0.2 s the vortex lies very
close to the exit plane which accounts for the change in sign of velocity at r′ ≈ 2.9 cm.

The agreement between the theoretical and experimental profiles for r′ < 2 cm
and r′ > 3 cm is reasonable, except at t′ = 0.2 s, where we see from figure 2(a) that
within the nozzle there is a persistent and, as we shall see later, significant difference.
The explanation for this lies in an apparent inconsistency in Didden’s (1979) results.
From his figure 2 we see that at t′ = 0.2 s the piston speed is 0.924U0. We can
calculate the volume flow rate from this and compare it with the volume flux in the
exit plane by using the profile shown in figure 2(a). The latter falls short of the
required value by 8.5%. Carrying out the same excercise at t′ = 0.3 s, 1.6 s when
the piston speed U0 is uniform yields differences of −2%, −3% respectively, which
are probably within experimental error. As a comparison the flow rates at the exit
plane from our computations differ from the known exact value by less than 0.1%,
which does add confidence to our results. The inconsistency to which we refer, and
which we discuss further in §7 below, is probably due to an inaccurate rendering of
the piston trajectory in figure 2 of Didden (1979).

7. Circulation shedding
To calculate the rate of shedding of circulation Γ we may use the result of Didden

(1979, 1982), namely
dΓ

dt
=

∫ r0

0

w(r, zn, t)ζ(r, zn, t) dr, (7.1)

where r0 is chosen to lie in the region ζ(r, zn, t) = 0. In this approach Didden splits
the range of integration into r 6 rni, r > rno to calculate separately the circulation
shed from the inner and outer surfaces. However, we have found it more convenient
to evaluate dΓ/dt at each instant of time from

Γ (t) =

∫
S

ζ(r, z, t) dz dr, (7.2)

where the domain of integration S is that part of our computational domain with z >
zn, and r < 0.9 which specifically excludes any vorticity created at the outer boundary.
This assumes that the total vorticity shed lies in z > zn and does not penetrate the
outer boundary layer at r = 1.

We have evaluated dΓ/dt for each of the Reynolds numbers Rd = 1150, 2300, 4600
and the results are shown in figure 4. We also include in this figure the circulation
shedding rate estimated by Didden from his experiment with Rd = 2300 and also that
calculated by Nitsche & Krasny (1994) from their inviscid vortex-blob method. The
results in figure 4 are again presented in dimensional form.

Consider first the results obtained from our simulations. In all three cases the shed-
ding rate increases and reaches a maximum at t′ = 0.2 s, with the maximum shedding
rate increasing with Rd. This rise in shedding rate during the first fraction of a second
may be attributed to the velocity field of accumulating vorticity at the nozzle lip, as
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Figure 4. The shedding rate of circulation. Simulation at Rd = 2300 ( ), experiment ( ),
inviscid result of Nitsche & Krasny (1994) ( ), simulation at Rd = 1150 ( ), simulation
at Rd = 4600 ( ).

noted in figure 2. Subsequently the self-induced velocity moves this vorticity, as a ring,
away from the nozzle. During this phase the shedding rate falls until the ring itself
makes no contribution to it and, in each case, it assumes an almost constant value for
t′ > 0.6 s, with little Reynolds number variation, until the inflow ceases. Didden’s ex-
perimental result with Rd = 2300 shows similar features, but during the initial period
of piston acceleration the shedding rate falls consistently below the simulation at the
same Reynolds number. In discussing the velocity profiles in §6 above we have iden-
tified an inconsistency within Didden’s results. This now clearly manifests itself in the
circulation shedding rate which is lower than implied by the piston trajectory shown in
figure 2 of Didden (1979). The present simulation and the experiment are therefore not
necessarily inconsistent. Consider next the inviscid result of Nitsche & Krasny (1994)
shown in figure 4. Their vortex-blob method involves the use of a parameter, δ, to
regularize the roll-up of the free vortex sheet consequent upon the application of a
Kutta condition at the orifice lip. In their paper results are presented for values of
δ = 0.1, 0.2, 0.4. The result shown in figure 4 corresponds to δ = 0.1. The vortex-blob
method is expected to yield an inviscid solution in the limit δ → 0. The most striking
feature of the inviscid result in figure 4 is the sharp peak at t′s ≈ 0.015 s. However this
is strongly dependent upon δ, and indeed only 70% of the peak value at δ = 0.2. De-
creasing δ further can be expected to lead to a further reduction in this peak. It may
also be noted that in the simulation for Rd = 4600 there is a development at t′ ≈ 0.1 s
which appears to be forming a local maximum. As a consequence we believe that
the inviscid result and high-Reynolds-number simulation are not inconsistent; indeed
we consider that our results provide powerful support in favour of the vortex-blob
method for inviscid flow, for which the present problem is a severe test.

In figure 5 we show the variation with time of the total shed circulation. This
proves to be relatively insensitive to Reynolds number variations. During the initial
formation period it increases slightly with Reynolds number, whilst at the point
t′ = 1.6 s, when inflow ceases the reverse is the case. The experimental value falls
short of the calculated value at Rd = 2300 by about 10% which is due to the lower
shedding rate in the initial stages as we have already discussed. The inviscid result is
somewhat higher than might be expected in the limit Rd →∞ due to an overestimate



208 R. S. Heeg and N. Riley

0.4 0.8 1.2 1.6

¡
′ (

cm
2  

s–1
)

t′ (s)
0

20

25

30

5

10

15

Figure 5. The total shed circulation. Simulation at Rd = 2300 ( ), experiment ( ), inviscid
result of Nitsche & Krasny (1994) ( ), simulation at Rd = 1150 ( ), simulation at Rd = 4600
( ).
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Figure 6. The vortex ring trajectories. Simulation at Rd = 2300 ( ), inviscid result of
Nitsche & Krasny (1994) ( ), simulation at Rd = 1150 ( ), simulation at Rd = 4600 ( ).

of the shedding rate by the vortex-blob method. This is most apparent in the early
stages, but is not insignificant at the end of the inflow period, as may be noted from
figure 12(c) of Nitsche & Krasny (1994).

8. Vortex-ring trajectories
The trajectory r = rt(z) of the vortex rings has been measured in the experiments

and estimated from both the numerical simulations in our finite-Reynolds-number
calculations and in the inviscid calculations of Nitsche & Krasny. The theoretical
estimate of the vortex-ring position uses, in all cases, the point of maximum vorticity
rather than the centroid of the vorticity distribution in a cross-section of the ring. But
at high Reynolds number we may expect these to be almost coincident. In figure 6 we
compare the theoretical trajectories at different Reynolds numbers, whilst in figure 7
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Figure 7. A comparison between the theoretical and experimental vortex trajectories at Rd = 2300.
Simulation at Rd = 2300 ( ), experiment ( ).

we make a comparison between our present results and experiment at Rd = 2300.
The results are again presented in dimensional form.

Consider first figure 6. In all the cases considered the vortex rings increase in
diameter until the inflow ceases. Thereafter there is an abrupt contraction of the
ring. Didden suggests that this is largely due to the influence of the nozzle boundary.
However, when the inflow ceases a secondary vortex ring is observed to form at
the tube exit and a referee has made the suggestion, with which we concur, that its
presence results in the contraction. The Reynolds number dependence that may be
inferred from the point of inflow cessation is that as Rd increases the ring diameter
increases as does the speed of the vortex ring. We also include in figure 6 the inviscid
result of Nitsche & Krasny for δ = 0.1 which, as we expect, yields a faster-moving
ring. However from results they present, which again show a strong dependence on
δ, we infer that the limiting solution for Rd → ∞, that is as δ → 0, will yield a
slower-moving ring with larger diameter than shown in figure 6, consistent with the
trends we have established at large, but finite, Reynolds number. In figure 7 we
compare the theoretical and experimental trajectories at Rd = 2300. Judged again
from the results at inflow cessation, the ring is predicted to have a slightly larger
diameter and higher speed. This is consistent with the shortfall in shed vorticity
discussed above; otherwise the agreement is good.

It has been noted by both Didden (1979) and Nitsche & Krasny (1994) that in the
early stages of ring formation the solution does not conform to the similarity result
of Pullin (1979). If rc, zc denote the coordinates of the vortex position measured from
the tube edge, then we would expect rc ∼ t2/3, zc ∼ t2/3. However, whilst rc behaves
reasonably well in this manner, both Didden and Nitsche & Krasny find that zc is
more accurately represented by zc ∼ t3/2. Our results confirm this as may be seen
in figure 8. In this figure we use, just as Nitsche & Krasny (1994), the shifted time
t∗ = t′ − teff , where teff = 0.078 is the effective time origin defined by∫ t′

0

g(t) dt = t′ − teff. (8.1)
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Figure 8. Logarithmic plots of the vortex position measured from the tube edge, time
t∗ = t′ − teff . (a) Radial coordinate, r∗ = rc − rni, (b) axial coordinate.
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Figure 9. A vorticity contour plot at t′ = 0.32 s for the case Rd = 2300.
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The reasons for this discrepancy have not been clear, but we offer the following
suggestions. Certainly during the period of inflow acceleration, up to t′ = 0.3 s, the
flow cannot be expected to be of similarity form. In figure 9 we show a section
of the ring just beyond that time, at t′ = 0.32 s chosen to coincide with a time at
which Didden and Nitsche & Krasny present flow visualizations (for a range of such
visualizations from both experiment and inviscid theory see figure 4 of Nitsche &
Krasny 1994). The similarity theory is based upon the notion that the vortex ring
grows within a known potential flow. However the scale of the vortex for times
t′ > 0.3 s suggest that such a notion may not be appropriate. Nitsche & Krasny
also draw attention to the effect of the ring’s self-induced velocity upon the similarity
theory. On these bases it seems reasonable to propose that the similarity theory may
only apply for very short times, typically up to the time of maximum shedding rate
of vorticity. In the present case that would be t′ = 0.2 s, which is not in the time
range the similarity theory can be expected to apply anyway.

The authors are indebted to Arthur Veldman and Monika Nitsche for valuable
discussions. Also to Auke van der Ploeg for providing us with his implementation of
the matrix solver and preconditioner we have used. Furthermore R.S.H. acknowledges
the financial support of the Rijksuniversiteit Groningen which enabled him to visit
the University of East Anglia, where most of the preparations for the calculations
described herein were carried out. And last, but not least, R.S.H. thanks the University
of Enschede for providing computing time for the computations which were used in
this revised version.
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